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ABSTRACT Vibrio parahaemolyticus is a leading cause of seafood-borne gastroen-
teritis. Given its natural presence in brackish waters, there is a need to develop op-
erational forecast models that can sufficiently predict the bacterium’s spatial and
temporal variation. This work attempted to develop V. parahaemolyticus prediction
models using frequently measured time-indexed and -lagged water quality mea-
sures. Models were built using a large data set (n � 1,043) of surface water samples
from 2007 to 2010 previously analyzed for V. parahaemolyticus in the Chesapeake
Bay. Water quality variables were classified as time indexed, 1-month lag, and 2-month
lag. Tobit regression models were used to account for V. parahaemolyticus measures be-
low the limit of quantification and to simultaneously estimate the presence and
abundance of the bacterium. Models were evaluated using cross-validation and met-
rics that quantify prediction bias and uncertainty. Presence classification models con-
taining only one type of water quality parameter (e.g., temperature) performed
poorly, while models with additional water quality parameters (i.e., salinity, clarity,
and dissolved oxygen) performed well. Lagged variable models performed similarly
to time-indexed models, and lagged variables occasionally contained a predictive
power that was independent of or superior to that of time-indexed variables. Abun-
dance estimation models were less effective, primarily due to a restricted number of
samples with abundances above the limit of quantification. These findings indicate
that an operational in situ prediction model is attainable but will require a variety of
water quality measurements and that lagged measurements will be particularly use-
ful for forecasting. Future work will expand variable selection for prediction models
and extend the spatial-temporal extent of predictions by using geostatistical interpo-
lation techniques.

IMPORTANCE Vibrio parahaemolyticus is one of the leading causes of seafood-borne
illness in the United States and across the globe. Exposure often occurs from the
consumption of raw shellfish. Despite public health concerns, there have been only
sporadic efforts to develop environmental prediction and forecast models for the
bacterium preharvest. This analysis used commonly sampled water quality measure-
ments of temperature, salinity, dissolved oxygen, and clarity to develop models for
V. parahaemolyticus in surface water. Predictors also included measurements taken
months before water was tested for the bacterium. Results revealed that the use of
multiple water quality measurements is necessary for satisfactory prediction perfor-
mance, challenging current efforts to manage the risk of infection based upon water
temperature alone. The results also highlight the potential advantage of including
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historical water quality measurements. This analysis shows promise and lays the ground-
work for future operational prediction and forecast models.

KEYWORDS Chesapeake Bay, Tobit regression, Vibrio parahaemolyticus, forecast,
prediction, public health, temporal lags

Vibrio parahaemolyticus is a rod-shaped Gram-negative bacterium and is autochtho-
nous to brackish and marine waters. V. parahaemolyticus is one of the leading

causes of seafood-borne illness in the United States and around the world. The
resulting infection, known as vibriosis, usually leads to gastroenteritis but can also
result in septicemia. The bacterium is estimated to cause over 30,000 illnesses each year
in the United States and has an exceptionally high rate of underreporting (1). Exposure
to V. parahaemolyticus primarily occurs through consumption of raw or undercooked
shellfish, although direct exposure through an open cut or wound is possible. In the
United States, illnesses are primarily attributed to the consumption of raw oysters.
Bivalve mollusks are filter feeders and so are able to concentrate V. parahaemolyticus in
their tissue to levels up to 100 times those that have been observed in surrounding
waters (2).

Vibrio spp. are highly influenced by temperature. Environmental samples taken
across decades have shown the abundance of these bacteria to be strongly correlated
with warming waters and as such have been labeled a “microbial barometer of climate
change” (3, 4). This trend is considered to be a major driver of the marked increase in
vibriosis illnesses observed across the United States, including the Chesapeake Bay, in
the last 2 decades, and recent reporting indicates that illness rates continue to rise
(5–8). The Chesapeake Bay has also been significantly and unequivocally warming for
the past 30 years, with many portions of the Bay experiencing increases in water
temperature at a rate of 0.5 to 0.8°C per decade (9). This rapid warming is likely to
continue putting the region at an ever-heightened risk for vibriosis caused by oyster
consumption and direct water contact (10). There is therefore a pressing need to
mitigate the health and economic risks that V. parahaemolyticus poses to shellfish
consumers and growers in the region.

As V. parahaemolyticus is naturally present and persistent in the environment,
considerable research efforts into how to reduce/remove the bacterium from shellfish
destined for human consumption have been undertaken. Postharvesting techniques,
such as relaying/depuration, icing of shellfish immediately postharvest, and cold pas-
teurization, have been evaluated for their ability to reduce V. parahaemolyticus abun-
dance and limit postharvest growth (11). While this work is essential to reduce the risk
of vibriosis, the United States Food and Drug Administration’s (USFDA) quantitative
microbial risk assessment of V. parahaemolyticus in raw oysters identified in sensitivity
analyses that abundance at the time of harvest is the largest source of variation in the
risk of vibriosis (12). Therefore, there is still a need to explore V. parahaemolyticus
ecology and the bacterium’s relation to environmental measures in order to develop
prediction and forecast models that can be applied to shellfish-growing areas prior to
harvest. Such models would prove extremely useful for shellfish harvesters and risk
managers, such as where to site a shellfish bed and whether postharvesting methods
are needed to reduce the risk of vibriosis to an acceptable level. These models will,
ideally, be based on frequently measured parameters so that they can operate within
existing monitoring frameworks and avoid financial or logistical hurdles.

While there have been a number of research efforts to better understand the association
of V. parahaemolyticus with commonly measured water quality parameters (e.g., water
temperature, salinity, etc. [13, 14]), few have done so with the explicit goal of predicting
the bacterium in space and/or time. Previous Vibrio species prediction efforts include
work that explored empirical associations of V. cholerae with in situ measures of water
temperature and salinity to create forecasts and hindcasts in the Chesapeake Bay based
on a regional hydrodynamic model (15). Other studies developed similar hind- and
forecast models in the Chesapeake Bay for Vibrio vulnificus (16–18). Additional work in
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the Gulf of Mexico attempted to develop prediction models for V. parahaemolyticus
using remotely sensed measures of water temperature (19). Note that these studies
have been mostly restricted to water temperature and salinity parameters due to the
limitations of the underlying mechanistic models and remotely sensed data. Further-
more, while these studies initially used in situ water quality measurements to develop
their models, they did not consider using regularly monitored in situ data to evaluate
V. parahaemolyticus predictions. While in situ measurements are restricted in space and
time compared to hydrodynamic models or remotely sensed data, they offer a more
accurate measure of water quality and therefore a potentially less biased prediction of
Vibrio abundance. Spatial-temporal interpolation using underlying stochastic space-
time dependence structures could also overcome such restrictions and therefore make
direct use of in situ data in prediction models more comparable to that in the
mechanistic and remotely sensed data-based models.

The aforementioned Vibrio species prediction models have been developed using
only space- and time-indexed water quality measurements (i.e., water quality measured
at the same time and place at which the microbial sample was collected). These models
subsequently used previously estimated and forecasted water quality values from
mechanistic models or remotely sensed data to create Vibrio hind- and forecasts.
However, additional predictive power may be acquired by expanding the scope of the
empirical modeling efforts to include water quality measures taken prior to Vibrio
sampling and/or at nearby locations. While Vibrio abundance varies substantially across
small time scales (e.g., intradiurnal time scales), long-term fluctuations, such as season-
ality, indicate that past environmental conditions could have an impact on current
Vibrio populations. For example, warmer waters in early summer may lead to a higher
V. parahaemolyticus abundance later in the season, while cooler waters may lead to a
lower abundance. Such information is likely somewhat independent of the current
water conditions and so may provide substantive improvements to prediction. Previous
studies have identified the benefit of lagged variables for inferential associations with
Vibrio bacteria and vibriosis outbreaks, such as temperature in the French Atlantic coast
(20), salinity, precipitation, and humidity in Taiwan (21), as well as wind and heating/
cooling days in North Carolina, USA (22).

The current analysis is an attempt to develop and evaluate V. parahaemolyticus
prediction models using only time-indexed and -lagged in situ water quality measure-
ments that are frequently sampled across the Chesapeake Bay. The models utilize a
large and diverse set of water samples (�1,000) taken seasonally from 2007 to 2010
throughout the Chesapeake Bay at 148 regularly measured water quality monitoring
stations. This work is an extension of a previous analysis on the same data set that
characterized associations between time-indexed environmental measures and V. para-
haemolyticus abundance (14). In the current analysis, emphasis is instead on predic-
tion performance. Temporally lagged measures of water quality were included in the
prediction models alongside time-indexed measures, and model performance was
evaluated using cross-validation with randomly selected holdout samples. Water tem-
perature measurements are of particular interest in this work, given that this measure
is the primary environmental input for the USFDA risk assessment and is frequently
used by shellfish sanitation managers (12, 23). It is hypothesized that while the
time-indexed water temperature would provide the best prediction performance,
lagged measures of water temperature and other water quality parameters would also
provide an added benefit. It is further hypothesized that these lagged measures would
be able to adequately predict the presence and abundance of V. parahaemolyticus
independently of time-indexed measures. Overall, these analyses provide initial feed-
back on whether such efforts should be expanded to develop operational prediction
and forecast models of V. parahaemolyticus in shellfish-growing areas.

RESULTS
Descriptive observations. The frequency of water sample collection for the detec-

tion of Vibrio parahaemolyticus across space and time, as well as results from microbial
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laboratory analysis, has been described previously (14). Additional water quality data
retrieved from the Chesapeake Bay Program Data Hub varied considerably in spatial-
temporal frequency at the 148 monitoring stations originally used for V. parahaemo-
lyticus data collection (Fig. 1). Of note, stations in the main stem of the Bay were
systematically sampled more frequently during the summer months. From 2007 to
2010, an average of 28% of the stations were monitored each week and 53% were
monitored every 2 weeks, while over 85% were monitored each month. Furthermore,
locations geographically close to one another were more likely to be monitored in a
similar time period due to the logistics of the sampling scheme (traveling by boat to
each station). While 22% and 40% of stations had more than one record in the derived
1- and 2-month-lag variables, respectively, only 2.0% and 4.5% of stations were not
monitored, respectively.

Rates of missing water quality data were the lowest for water temperature and
slightly higher for salinity, clarity, and dissolved oxygen (DO) (Table 1). Rates of missing
data were the lowest for time-indexed samples and slightly higher for time-lagged
samples. While no specific variable was missing in more than 7.2% of all samples,
missingness across variables often occurred in different observations. Therefore, single-

FIG 1 Map of Chesapeake Bay monitoring stations used for V. parahaemolyticus sampling as well as
time-indexed and -lagged water quality measurements.
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parameter model sets had a missingness rate ranging from 6.9 to 13.4%, while multipa-
rameter model sets had a missingness rate of 14.9% of samples for summer and 18.3% for
autumn. Overall, missing data occurred at similar rates across seasons and for both
censored and uncensored V. parahaemolyticus abundance samples.

The quantification rate for V. parahaemolyticus was low, with only 22% of all summer
and autumn samples having measures above the limit of quantification (LOQ) (Table 1).
As expected, temperature, salinity, and DO varied widely by season. The time-indexed
water temperature was, on average, 9.4°C higher in summer than in autumn. The trend
reversed as July-indexed measures were lagged into May and October-indexed mea-
sures were lagged into August. Salinity was over 3.6‰ higher in July than in October.
The salinity trend then reversed, with summer lagged measurements becoming fresher
and autumn lagged measurements becoming more saline. DO was higher in autumn
than in summer. The findings for DO from the 1-month lags were similar for both
sampling periods, while the 2-month lags showed May measurements having higher
DO concentrations than August measurements. The Secchi disk depth did not vary
substantially by season.

While developing prediction models, two novel environmental associations with V.
parahaemolyticus abundance were noted. The 1-month-lagged water temperature had
a nonlinear relationship in autumn, displaying a sharp decline between 19.6 and 21.0°C
(� � �3.83, P � 0.0001) and a gradual increase in warmer waters (� � 0.16, P � 0.02;
Fig. 2A). This was primarily due to the five lowest temperature measurements being
associated with a moderate to high abundance of V. parahaemolyticus and is discussed
in more detail below. For summer samples, an interaction between the 2- and 1-month-
lagged measures of salinity was observed: when the 2-month-lagged salinity was low,
there was a strong positive association between the 1-month-lagged salinity and V.
parahaemolyticus, but as the 2-month-lagged salinity increased, the association became
more gradual and nonsignificant (Fig. 2B). This finding suggests that slight increases in
salinity in fresher waters may allow for bacterium growth in the following month.

Prediction performance. For both cross-validation (CV) and forecast analyses, the
prediction models overall appeared to substantially improve the model fit compared to

TABLE 1 Descriptive characteristics of V. parahaemolyticus and water measurement variables, stratified by season

Parameter

No. of samples Median (IQRa) value

Total Uncensored Overall (n � 1,043)

Season

Summer (July)
(n � 550)

Autumn (October)
(n � 493)

V. parahaemolyticus (proportion [no.] of samples quantified) 1,043 226 0.217 (226) 0.232 (128) 0.199 (98)
V. parahaemolyticus (log10 GE/ml; quantified only) 226 226 0.563 (0.258, 0.864) 0.560 (0.257, 0.879) 0.606 (0.265, 0.847)

Water temp (°C)
Time indexed 1,043 226 25.3 (18.1, 27.3) 27.3 (26.4, 28.1) 17.9 (15.6, 20.7)
1-mo lag 1,017 216 24.8 (23.3, 26.3) 25.5 (24.1, 27.1) 23.6 (22.9, 24.8)
2-mo lag 994 209 21.7 (17.9, 26.9) 18.0 (16.7, 27.7) 27.0 (26.0, 28.3)

Salinity (‰)
Time indexed 1,042 226 12.0 (2.8, 17.1) 14.3 (4.1, 18.3) 10.7 (1.6, 14.9)
1-mo lag 987 216 10.8 (2.6, 16.3) 8.8 (0.7, 13.5) 13.7 (4.0, 18.3)
2-mo lag 968 209 9.4 (1.3, 14.6) 7.7 (0.1, 12.0) 12.2 (3.1, 16.4)

DO concn (mg/liter)
Time indexed 1,031 224 7.4 (6.5, 8.5) 6.8 (6.0, 7.6) 8.3 (7.3, 9.0)
1-mo lag 984 214 7.1 (6.3, 8.1) 7.3 (6.3, 8.4) 7.1 (6.3, 7.9)
2-mo lag 975 205 7.5 (6.5, 8.8) 8.6 (7.7, 9.7) 6.7 (6.0, 7.3)

Secchi disk depth (m)
Time indexed 1,021 222 0.8 (0.5, 1.3) 0.8 (0.5, 1.1) 1.0 (0.6, 1.5)
1-mo lag 1,006 215 0.8 (0.5, 1.2) 0.7 (0.5, 1.0) 0.8 (0.5, 1.3)
2-mo lag 982 205 0.8 (0.5, 1.2) 0.7 (0.4, 1.1) 0.8 (0.5, 1.2)

aIQR, interquartile range.
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that achieved with a null model (see Table S2 in the supplemental material). The
multiparameter model sets further improved the model fit compared to that achieved
with the single-parameter sets. Combining time-indexed and -lagged measurements as
well as appending additional environmental variables also further improved the model
fit, while including interaction terms or removing terms in the parsimonious models did
not noticeably affect the model fit.

All multiparameter models showed good classification, with most area-under-the-
curve (AUC) values being 0.8 or higher for the CV analyses (Table 2). No significant
change in the CV analyses was seen across all 6 models, and each provided a fair
balance between the sensitivity and specificity of quantification. Summer forecast
models also performed fairly well, although the models tended to favor either sensi-
tivity or specificity, but not both (Table 3). While many autumn forecasts also provided
a good classification, the best performance was seen in the index-only model (model
1), which displayed a good sensitivity and a fair specificity. Including additional
environmental variables (models 4 to 6) did not perceptibly change the classification
results.

The conditional expectation of V. parahaemolyticus abundance was unacceptably
poor for almost every model considered (i.e., models produced negative cross-
validation R2 [CV-R2] values). The only model that produced consistently positive CV-R2

values was model 4 in the multiparameter model set for summer CV, which included all
four water quality time-indexed measures, along with other previously assessed envi-
ronmental measures (Table 4). Comparisons of the observed versus the predicted
abundance for specific cross-validation iterations indicated systematic underestimation,
particularly in the forecast models (data not shown).

While an unconditional expectation of abundance for the multiparameter model set
resulted in mostly positive CV-R2 values, many models continued to display overall
poor results, and only a few models produced CV-R2 values above 0.3 (Table 5). The
best-performing model for abundance continued to be model 4 for summer CV,

FIG 2 (A) Nonlinear association of 1-month-lagged water temperature and V. parahaemolyticus (Vp)
abundance in autumn with a knot set at 21°C. Note that all samples taken below this threshold had
quantifiable levels of V. parahaemolyticus. (B) Association of 1-month-lagged salinity and V. parahaemo-
lyticus abundance in summer stratified by quartiles of 2-month-lagged salinity.
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providing fair predictions (CV-R2 � 0.4) in at least 25% of the iterations. For the autumn
forecast analysis, the combined model as well as the lagged model with additional
covariates (models 3 and 5) also performed substantially better than the other models
considered.

Sensitivity analyses revealed noticeable geographic variation in classification per-
formance for CV models (Fig. 3). Summer CV models resulted in clusters of inferior
classification in the Patuxent and York Rivers and in more saline regions of the James
River. Autumn models contained similar issues in the Patuxent River, part of the
Rappahannock River, and the lower eastern tributaries, including the Nanticoke River
and the Tangier and Pocomoke Sounds. There was no noticeable geographic variation
for forecasted classification results. Similarly, no noticeable annual variation was found
for any CV model, indicating that the classification models did not vary substantially by
sampling year.

TABLE 3 2010 forecast results for presence of V. parahaemolyticus,d using water temperature, salinity, DO, and Secchi disk depth lagged
at 0, 1, and 2 months

Season and
model no. Lag or model AUCa AUC 2.5%b

Optimal
threshold Accuracy Sensitivity Specificity

Summer
1 Lag 0 0.814 0.726 0.756 0.729 0.603 0.921
2 Lag 1 � lag 2 0.736 0.632 0.872 0.729 0.828 0.579
3 Lag 0 � lag 1 � lag 2 0.777 0.679 0.867 0.750 0.793 0.684
4 Model 1 � covariatesc 0.811 0.725 0.966 0.785 0.893 0.622
5 Model 2 � covariates 0.710 0.603 0.857 0.656 0.607 0.730
6 Model 3 � covariates 0.785 0.693 0.895 0.720 0.679 0.784

Autumn
1 Lag 0 0.822 0.741 0.617 0.761 0.722 0.838
2 Lag 1 � lag 2 0.802 0.718 0.649 0.752 0.764 0.730
3 Lag 0 � lag 1 � lag 2 0.812 0.733 0.649 0.688 0.542 0.973
4 Model 1 � covariates 0.821 0.734 0.581 0.769 0.761 0.784
5 Model 2 � covariates 0.807 0.718 0.877 0.806 0.944 0.541
6 Model 3 � covariates 0.786 0.693 0.706 0.741 0.761 0.703

aAUC, area under curve of the receiving operating characteristic.
bLower bound of the 95% confidence interval from bootstrapped AUC.
cCovariates include the additional environmental variables described in Table S1 in the supplemental material.
dThe probability of quantification of V. parahaemolyticus (�1 GE/ml).

TABLE 4 Prediction results for log10 abundance of V. parahaemolyticus (conditional expectation) using water temperature, salinity, DO,
and Secchi disk depth lagged at 0, 1, and 2 months

Season and
model no. Lag or model

Random cross-validationd 2010 forecast

RMSEa MPSEb CV-R2c RMSE MPSE CV-R2

Summer
1 Lag 0 0.409 (0.380, 0.439) 0.240 (0.215, 0.269) �0.069 (�0.242, 0.059) 0.625 0.171 �1.025
2 Lag 1 � lag 2 0.449 (0.404, 0.496) 0.259 (0.235, 0.283) �0.292 (�0.491, �0.129) 0.682 0.172 �1.412
3 Lag 0 � lag 1 � lag 2 0.422 (0.390, 0.450) 0.333 (0.299, 0.372) �0.145 (�0.335, 0.021) 0.639 0.215 �1.115
4 Model 1 � covariatese 0.350 (0.321, 0.381) 0.379 (0.334, 0.416) 0.299 (0.131, 0.427) 0.652 0.276 �1.146
5 Model 2 � covariates 0.413 (0.377, 0.459) 0.365 (0.327, 0.410) �0.001 (�0.195, 0.169) 0.699 0.288 �1.467
6 Model 3 � covariates 0.411 (0.378, 0.444) 0.418 (0.373, 0.469) 0.032 (�0.158, 0.195) 0.669 0.343 �1.258

Autumn
1 Lag 0 0.354 (0.319, 0.391) 0.188 (0.167, 0.210) �0.482 (�0.677, �0.263) 0.418 0.124 �0.607
2 Lag 1 � lag 2 0.330 (0.290, 0.390) 0.261 (0.227, 0.314) �0.224 (�0.802, �0.007) 0.372 0.182 �0.276
3 Lag 0 � lag 1 � lag 2 0.326 (0.290, 0.383) 0.322 (0.282, 0.374) �0.231 (�0.753, 0.031) 0.356 0.286 �0.169
4 Model 1 � covariates 0.379 (0.331, 0.421) 0.255 (0.229, 0.284) �0.510 (�0.731, �0.231) 0.415 0.215 �0.589
5 Model 2 � covariates 0.343 (0.303, 0.388) 0.334 (0.291, 0.379) �0.222 (�0.520, 0.019) 0.379 0.295 �0.326
6 Model 3 � covariates 0.351 (0.317, 0.385) 0.374 (0.332, 0.425) �0.284 (�0.613, �0.047) 0.443 0.258 �0.810

aRMSE, root mean square error.
bMPSE, mean prediction standard error.
cCV-R2, cross-validation R2.
dData represent the median (interquartile range).
eCovariates include additional environmental variables described in Table S1 in the supplemental material.
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The supplemental material includes comparable results for the other model sets for
both classification (Tables S3 to S9) and unconditional expectation (Tables S10 to S16).
Additional conditional expectation results are not included, as all other model sets were
inferior. Single-parameter classification results were unacceptably poor for both the
water temperature and clarity model sets, with the AUC statistic rarely reaching above
0.7 and frequently falling below 0.5, and while the DO models performed slightly
better, the classification was still poor overall. The salinity model set provided the most
adequate single-parameter model classification, but several of the high-performing
models had a substantial trade-off between sensitivity and specificity. Including inter-
action terms in the multiparameter model set created a more balanced trade-off
between sensitivity and specificity for the combined model 3 summer forecast but
otherwise did not change the classification results. The parsimonious model sets also
revealed no substantial change in classification performance.

Similar to the classification results, the water temperature and clarity model sets all
produced poor unconditional expectations of V. parahaemolyticus abundance, produc-
ing many negative CV-R2 values. Salinity and DO measurements also produced similarly
poor results. Including interaction terms in the multiparameter model set worsened
the unconditional prediction and substantially increased the prediction standard error.
The parsimonious multiparameter model set did not improve autumn CV predic-
tions. The parsimonious model set with interaction terms did result in the combined
model 3 producing a fair summer forecast with an CV-R2 of 0.37, although in the
summer CV analysis the same model performed much worse than the multiparameter
model set without interactions.

DISCUSSION

These analyses offer a novel attempt at predicting the presence and abundance of
environmental Vibrio spp. by rigorously evaluating V. parahaemolyticus prediction and
forecast models that include both time-indexed and -lagged in situ water quality
measures. The results were, overall, positive for classification, indicating that the use of
multiple frequently sampled in situ water quality measurements can provide adequate
prediction for the presence of quantifiable V. parahaemolyticus in the Chesapeake Bay.
The results also suggest that lagged measures provide an independent and, in some
cases, superior predictive power compared to time-indexed measures. The results for
most abundance prediction models were inferior, indicating that prediction and fore-

TABLE 5 Prediction results for log10 abundance of V. parahaemolyticus (unconditional expectation) using water temperature, salinity, DO,
and Secchi disk depth lagged at 0, 1, and 2 months

Season and
model no. Lag or model

Random cross-validationd 2010 forecast

RMSEa MPSEb CV-R2c RMSE MPSE CV-R2

Summer
1 Lag 0 0.323 (0.313, 0.334) 0.108 (0.099, 0.115) 0.221 (0.155, 0.294) 0.472 0.114 0.299
2 Lag 1 � lag 2 0.340 (0.326, 0.354) 0.122 (0.115, 0.131) 0.145 (0.070, 0.213) 0.496 0.117 0.224
3 Lag 0 � lag 1 � lag 2 0.325 (0.312, 0.337) 0.149 (0.140, 0.161) 0.220 (0.131, 0.293) 0.476 0.146 0.286
4 Model 1 � covariatese 0.301 (0.289, 0.314) 0.161 (0.149, 0.172) 0.366 (0.287, 0.430) 0.484 0.179 0.285
5 Model 2 � covariates 0.324 (0.308, 0.340) 0.165 (0.152, 0.177) 0.272 (0.195, 0.337) 0.514 0.197 0.194
6 Model 3 � covariates 0.315 (0.302, 0.329) 0.179 (0.167, 0.193) 0.303 (0.221, 0.380) 0.498 0.224 0.243

Autumn
1 Lag 0 0.295 (0.283, 0.307) 0.098 (0.092, 0.104) 0.061 (�0.023, 0.141) 0.348 0.078 0.152
2 Lag 1 � lag 2 0.298 (0.282, 0.325) 0.132 (0.121, 0.146) 0.036 (�0.220, 0.155) 0.326 0.107 0.259
3 Lag 0 � lag 1 � lag 2 0.292 (0.276, 0.311) 0.152 (0.140, 0.164) 0.072 (�0.087, 0.195) 0.316 0.172 0.300
4 Model 1 � covariates 0.301 (0.289, 0.315) 0.138 (0.128, 0.147) 0.056 (�0.035, 0.143) 0.333 0.109 0.232
5 Model 2 � covariates 0.295 (0.281, 0.312) 0.162 (0.151, 0.175) 0.098 (�0.031, 0.205) 0.314 0.172 0.320
6 Model 3 � covariates 0.296 (0.282, 0.311) 0.179 (0.167, 0.192) 0.096 (�0.029, 0.199) 0.329 0.159 0.250

aRMSE, root mean square error.
bMPSE, mean prediction standard error.
cCV-R2, cross-validation R2.
dData represent the median (interquartile range).
eCovariates include additional environmental variables described in Table S1 in the supplemental material.
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cast model development on alternative data sets is needed to advance operational
models that can specify bacterium abundance.

The focus on water temperature, salinity, dissolved oxygen, and clarity as prediction
variables in this work is supported by the large body of research confirming their
associations with V. parahaemolyticus (13, 14) and the ease and frequency with which
these measurements are taken in many bodies of water. Of particular interest is the
temperature measurement, given its use in shellfish safety risk management across the
United States and as suggested by the USFDA risk assessment (12, 23). The current
findings suggest that temperature alone or any other single water quality measurement
is insufficient for predicting the presence or abundance or V. parahaemolyticus in
surface water. In contrast, the appropriate classification of quantifiable V. parahaemo-
lyticus requires only a few commonly measured water quality parameters, while the
inclusion of additional parameters, such as nitrogen and phosphorus measurements,
appears to provide the best overall abundance prediction. These findings suggest that

FIG 3 Geographic variation of classification performance for summer cross-validation (A), autumn cross-
validation (B), summer 2010 forecast (C), and autumn 2010 forecast (D). Model 3 (index � lagged) results
are shown for each map. Unsampled sites in 2010 are not displayed.
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when developing operational forecasting models in the Chesapeake Bay or elsewhere,
efforts should be made to include a wide array of feasibly measurable environmental
covariates to appropriately characterize bacterium habitat suitability.

In many of the evaluations, the performance of 1- and 2-month-lagged environ-
mental measures was often comparable to that of the index-only measures or the
time-lagged measures outperformed the index-only measures. These results lend
credence to the use of lagged measures in prediction/forecast model building and
suggest that such short-term historical measurements may at times be a more valuable
environmental indicator for V. parahaemolyticus than water quality measurements
obtained at the same place and time at which the microbial sample was collected. At
the very least, these lagged-only models could provide valuable predictions when used
for real-time forecasting, as results from this study suggest that current water quality
measures can be used to successfully forecast future V. parahaemolyticus abundance.
Subsequent research considering environmental determinants of V. parahaemolyticus
abundance and corollary prediction modeling should therefore continue to explore the
use of temporally lagged measures.

Currently, there is no known biological or ecological mechanism that would explain
why such large-scale lagged environmental measures are predictive of V. parahaemo-
lyticus abundance. Vibrio bacteria appear to be sensitive to their surrounding condi-
tions, and their abundance can change dramatically over short time periods (12, 24).
Shorter lags would have been preferred for this analysis, particularly at intervals that
can account for the semidiurnal tides that influence the Chesapeake Bay’s water
composition (25). Unfortunately, such measurements are, for the most part, unavailable
due to the existing water quality sampling regimen in the Chesapeake Bay. However,
these long-term-lagged associations could be indicative of intra-annual variations in
water conditions across the Bay that influence Vibrio ecology. Future research may help
explain why such associations appeared in this work and if these finding are general-
izable to other brackish bodies of water.

The underlying reasons for the differences in prediction performance between
autumn and summer are unclear. Seasonal differences in V. parahaemolyticus abun-
dance are frequently noted, given the large shift in water temperatures at higher
latitudes intra-annually (13, 26). Prediction variation by season may be due in part to
unmeasured environmental determinants of the bacterium, temporally lagged and
indexed, that make each season unique. These unmeasured determinants may include
the size and frequency of algal blooms, the presence and abundance of other Vibrio
spp. and bacteriophages, as well as the abundance of other micro- and macrofauna (27,
28). Differences attributed to sample size and the random error of bacterium and
environmental measurements across seasons also cannot be ruled out. While including
such biological determinants would likely improve predictions of V. parahaemolyticus,
they are, for the most part, not easily or regularly monitored in any body of water and
so are not considered relevant for testing the feasibility of an operational model.

All forecast abundance models displayed a systematic underestimation. This is
somewhat expected, given that V. parahaemolyticus abundance levels in this data set
were higher in 2010 than in the previous years, despite little interannual water
temperature variation (14). Previous work on this data set has also shown that the
annual variation in abundance is not wholly explained by the environmental covariates
included in these analyses (14). Models built using data sets with sample measurements
taken over longer periods of time would, ideally, reduce such systematic prediction
bias. Similar water samples were collected in the Chesapeake Bay for V. parahaemo-
lyticus detection in the years following 2010. Although they are far more limited in their
spatial-temporal scope, these samples could still be used to further test for such
systematic bias in forecast models. Given the expected global climatic changes and the
continued rapid warming in many parts of the Chesapeake Bay (9, 10), operational
forecast models for V. parahaemolyticus will have to account for such temporal non-
stationarity. These models will need to consider not just warming waters in shellfish-
growing areas but also changes in precipitation and other meteorological events.
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While the models that included additional environmental covariates (models 4 to 6)
did seem to improve the model fit, their predictive performance often remained
unchanged from or was worse than that of the simpler models. This implies that many
of these models were overfit, a common problem in prediction model building. A
notable exception was model 4 for summer cross-validation, which displayed the best
overall abundance prediction. Future work can isolate which specific variables are the
most important for prediction models, thus removing unnecessary variables that either
do not improve or hinder model performance.

The overall unsatisfactory but sporadically adequate performance for the condi-
tional and unconditional expectation of abundance in the current analysis is discour-
aging. The results are likely due to the high rate of samples with V. parahaemolyticus
levels below the limit of quantification and the resulting small sample size for uncen-
sored data. This relatively small data set was then further split into training data and
holdout samples to test prediction performance. The small sample sizes were likely
unable to fully characterize the associations between environmental measures and
V. parahaemolyticus abundance, especially over the large geographic and temporal
ranges of the data set. Such high variability in the associations across holdout samples
is likely what led to poor abundance estimation, although including a large number of
environmental variables resulted in significant improvements in summer abundance
prediction performance. While the unconditional models were overall superior in their
performance, their predictions were still substantially influenced by the conditional
expectation of the Tobit model (equation 6) and so were afflicted by the same issue
described above. The performance results for abundance prediction in this work should
therefore not be viewed as a limitation of the modeling approach but, rather, should
be viewed as an indication that the data set proved insufficient for developing
appropriate abundance predictions.

While the ability to differentiate and predict the relative abundance of V. parahae-
molyticus would be helpful for mitigating the risk of vibriosis, the well-performing
classification results provide an important step toward developing an operational
model for the bacterium in the Chesapeake Bay. The classification presented in this
work used the limit of quantification as a cutoff. However, similar models could be
developed that set classification cutoffs at elevated levels of abundance that have been
associated with an increase in the risk of vibriosis. If such an operational classification
model were to be developed, the threshold of the probability of an infectious dose
would need to be chosen a priori. While there was some variation in the optimal
threshold across iterations of the current classification analyses, the interquartile ranges
were not substantially large, indicating that identifying a probability threshold in an
operational model would be straightforward. Furthermore, depending on the goals of
the model end users, the threshold can be optimized to favor sensitivity or specificity.
Emphasis on the former would provide a more precautionary approach to shellfish food
safety, while a focus on the latter would reduce the rate of unharvested shellfish and
the use of expensive postharvesting practices.

Future work attempting to improve upon the current abundance prediction models
should consider utilizing or collecting different V. parahaemolyticus data sets with
higher proportions of quantifiable abundance. Oyster samples are frequently known to
contain concentrations of V. parahaemolyticus higher than what is observed in the
water column (2). Other work has also identified that performing quantitative PCR after
enrichment can increase the measured abundance of V. parahaemolyticus in water
samples (29, 30). Had the current models been developed on a similarly sized data set
in oysters and/or with enrichment prior to enumeration, it would be expected that the
abundance models would have performed much more adequately.

The extreme nonlinear association of V. parahaemolyticus with 1-month-lagged
water temperature in autumn was unexpected, as almost all prior research shows
that water temperature has a positive linear association with V. parahaemolyticus. The
nonlinear relationship appeared to arise from five samples with the lowest recorded
temperatures being affiliated with quantifiable V. parahaemolyticus samples and with

Davis et al. Applied and Environmental Microbiology

September 2019 Volume 85 Issue 17 e01007-19 aem.asm.org 12

 on N
ovem

ber 18, 2019 by guest
http://aem

.asm
.org/

D
ow

nloaded from
 

https://aem.asm.org
http://aem.asm.org/


two of the samples containing the highest recorded V. parahaemolyticus abundance in
the autumn data set. Why relatively low recorded temperatures 1 month prior to V.
parahaemolyticus sampling would indicate a high abundance is unclear. While potential
confounding with other environmental covariates should not be ruled out, this small
subset of data may be indicating a qualitatively different relationship between lagged
water temperature and V. parahaemolyticus abundance and so should be more thor-
oughly investigated in additional inferential analyses.

The interaction between 2-month- and 1-month-lagged salinity with V. parahaemo-
lyticus summer samples was also unexpected. Findings may indicate that in relatively
fresh waters, rapid increases in salinity may provide an opportunity for V. parahaemo-
lyticus to survive and potentially thrive in the water column. Additional research should
investigate the bacterium’s reaction to changes in salinity in fresh and low-saline brackish
waters.

While classification was found to be satisfactory overall, there was moderate geo-
graphic variation in cross-validation prediction performance, with some regions of the
Bay noticeably underperforming in either autumn or summer. Future work can address
this by conducting additional sampling in these areas in order to develop unique
region-specific models to produce a more satisfactory classification. While similar
sensitivity analyses could have stratified classification performance by whether V.
parahaemolyticus samples were taken at high or low tides, the time of sampling for this
data set was not readily available and so elevation of the tide at the time of sampling
could not be determined. However, many water characteristics impacted by tidal
height, such as temperature, salinity, and organic matter content, were included in the
prediction models. Therefore, accounting for tidal height in these models would not be
expected to improve prediction performance.

As has been described previously, the pathogenicity of V. parahaemolyticus in these
water samples is unknown, as only the thermolabile hemolysin (tlh) genetic marker
could be quantified in the samples (14). Previous work has indicated that pathogenic
V. parahaemolyticus strains may have unique associations with environmental indica-
tors (31). Therefore, the generalizability of current prediction models to pathogenic V.
parahaemolyticus is suspect. Samples were also taken in the water column as opposed
to oysters, the primary vector for vibriosis. The relationship between V. parahaemolyti-
cus in oysters and water is complex, and additional research is needed to elucidate how
abundance in the water column impacts health risks to oyster consumers. While this
can be considered a limitation of this work, it can also be argued that the relative
invariance of V. parahaemolyticus abundance in the water column compared to that in
oyster populations may provide a more stable measure with which to develop an
operational forecast model (14). Regardless, it is recommended that future work sample
for V. parahaemolyticus in Chesapeake Bay oysters to, at the very least, confirm the
utility of the current models.

The implementation of the Tobit regression in this study allowed the models to be
evaluated for the presence (i.e., quantification) and abundance of V. parahaemolyticus
simultaneously. Only a few studies focused on Vibrio spp. have employed this model
structure, despite its utility for microbial data sets with limits of detection (12, 26). This
methodological novelty is coupled with a number of cross-validation metrics, many of
which have not been used for Vibrio prediction modeling (15–17, 19), although a partial
exception can be found in previously published work (32). Identifying predictive
performance through the use of metrics such as CV-R2 and bootstrapped AUC confi-
dence bounds is far more rigorous than that through the use of classical accuracy and
concordance statistics, and so these metrics are invaluable when considering the
efficacy of a prediction model. It is recommended that future microbial research that is
confronted with substantial left-censored data consider utilizing the Tobit model
structure and, when the focus is prediction, include more rigorous cross-validation
metrics, such as those presented in this paper.

The prediction modeling approach described in this work can inform future mod-
eling efforts for other Vibrio spp., in particular, V. vulnificus and non-O1/O139 V.
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cholerae, which are also naturally found in estuarine waters and are major contributors
of reported vibriosis infections (33). Given that Vibrio species populations tend to
correlate with one another (27), similar models utilizing multiple temporally indexed
and lagged in situ environmental measurements would likely yield similar satisfactory
results. It is therefore recommended that such models be implemented with compa-
rable data in the Chesapeake Bay and elsewhere.

While the interactions of environmental covariates did not seem to be particularly
effective for the current results, machine learning algorithms could also be employed
in future analyses to detect idiosyncratic trends not easily identified in regression
analyses. Such algorithms may reveal unique patterns that are indicative of a high V.
parahaemolyticus abundance in the Chesapeake Bay and other bodies of water, and as
such, future modeling efforts should consider the use of such algorithms, in addition to
regression frameworks. Nonparametric methods may also be particularly helpful in
ranking environmental covariates by their predictive power, for example, emphasizing
the importance of DO and salinity, as the single-parameter classification model results
suggested.

All models developed for the current analyses grouped variables by whether they
were lagged or indexed in order to directly compare the performance of each category.
From an ecological perspective, the interactions between different water quality pa-
rameters are complex and will react to previous environmental events over different
lengths of time. Future work will therefore, ideally, continue to consider different types
of temporal lags (e.g., shorter lag-time periods when sampling is available and larger
retrospective periods from which to select predictor variables) as well as consider
spatial lags (e.g., measures from nearby monitoring stations). Ultimately, all water
quality data that have been systematically sampled in the Chesapeake Bay could be
used to develop a multivariable spatial-temporal interpolation model. Such a model
could be accessed to retrieve indexed or lagged estimates of water quality, along with
their interpolated uncertainty, as input for a V. parahaemolyticus prediction model. Such
an interpolation model would overcome the limitations in the current analysis of spatial
and temporal in situ sampling frequency. This model could also be used to replace
missing data in the current analysis, which may have contributed to the subpar perfor-
mance of the abundance models. The benefits of such an interpolation model would also
extend far beyond the field of Vibrio species forecasting and could be used for a number
of environmental and public health modeling efforts.

MATERIALS AND METHODS
Data collection and lagged variable creation. Water sampling for V. parahaemolyticus has been

described previously (14, 17). Briefly, surface water samples were collected at 148 regularly monitored
sampling stations across the Chesapeake Bay according to standard Chesapeake Bay Program protocols
(34) (Fig. 1). Samples were taken during the months of April (spring), July (summer), and October
(autumn) from 2007 to 2010. Water quality was measured in situ with a YSI datasonde (YSI Incorporated,
Yellow Springs, OH) and with a Secchi disk at the same time and location at which water samples were
collected. Measurements were analyzed according to the Chesapeake Bay Program’s guidelines (35).
Measurements included water temperature, salinity, clarity (Secchi disk depth), dissolved oxygen (DO),
forms of nitrogen and phosphorus, and pigments of phytoplankton (i.e., chlorophyll a and pheophytin).
Additional information, including meteorological data, such as precipitation and the distance of the
sampling stations from the shoreline, was also gathered (14).

Additional tidal water quality measurements, which are routinely monitored in the Chesapeake Bay,
for the 2007 to 2010 period of study were retrieved from the Chesapeake Bay Program Data Hub (36).
Data flagged during quality control were excluded. Water quality measurements were grouped both by
monitoring station and by date of sampling. Repeated measurements from the same station, day, and
depth were averaged. Any samples collected within 0.5 m of the surface were considered to be
effectively the same depth, and the data for these samples were also averaged. Only data from the 148
aforementioned stations were considered for the current analysis.

Given the wide variation in the frequency of water quality sampling across stations, measurements
indexed by monitoring station were lagged by 1-month and 2-month intervals (30.4 and 60.8 days,
respectively, � 15.2 days) from a given V. parahaemolyticus sampling date. If multiple measurements
were taken at a station in a given range, the sampling date closest to the midpoint was selected. For the
current analysis, only lags for water temperature, salinity, clarity, and DO were considered, as these
measures have been shown to be associated with V. parahaemolyticus in the literature and are regularly
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measured at these monitoring stations (13, 14). Furthermore, lags of water temperature are of particular
interest, given the parameter’s importance in the USFDA risk assessment (12).

Quantitative PCR of V. parahaemolyticus. Details of the microbial analyses have been fully
described previously (14). Briefly, a species-specific primer/probe combination was employed for detec-
tion of total V. parahaemolyticus (37). Assay performance testing was carried out as described previously
(14, 38). Standard curves were generated for total V. parahaemolyticus. Once complete, units of V.
parahaemolyticus abundance were transformed into genomic equivalents of the number of CFU per
milliliter (GE per milliliter) and were used as the primary outcome variable for statistical analysis. While
the pathogenic genetic markers tdh and trh were assessed, no quantifiable measurements of either
marker were found in any sample and so were excluded in the current analysis (14).

Tobit regression prediction models. Previous work on this data set used interval-censored regres-
sion to infer associations between environmental determinants and V. parahaemolyticus abundance
using the limit of detection (0.14 GE/ml) and limit of quantification (1.00 GE/ml) from the microbial
analysis (14). The current work instead used a Tobit, or left-censored, regression framework so that the
prediction modeling efforts were focused on identifying areas and time periods of quantifiable abun-
dance (39). Furthermore, the estimated values for the latent outcome variable of a Tobit model can have
multiple interpretations that are relevant for both the presence and the abundance of V. parahaemo-
lyticus. The Tobit regression model can be written as

Y* � X��� � �� (1)

where X�� is the matrix of predictor variables and their respective parameters (boldface represents
matrix notation); � is the residuals, with � � N�0, �2�; and Y* is the latent variable of V. parahaemolyticus
abundance. The measured abundance in water samples, Yi, is equal to Yi

* when it is above the limit of
quantification (LOQ) and is assigned the LOQ otherwise:

Yi � max(Yi
*, LOQ) (2)

where i is the index for the ith observation. The Tobit regression can be used to calculate the probability
(P) of an observation being above the LOQ by using the latent regression mean, � � E[Y*], where E[Y*]
is the expected value of Y*, and the standard error, �, as follows:

P�Yi 	 LOQ� � 
��i ⁄ �� (3)

where �(·) is the standard normal cumulative distribution function. The model can also be used to
calculate the conditional expectation (the expected value of Yi, given that Yi is greater than the LOQ):

E�Yi|Yi 	 LOQ� � �i � � · ���i ⁄ �� (4)

where �(·) is the inverse Mill’s ratio (40):

��
� �
��
�

�
�

(5)

and �(·) is the standard normal density function. The unconditional expectation (the expected value of
Yi) can also be calculated:

E�Yi� � P�Yi 	 LOQ� · E�Yi|Yi 	 LOQ� (6)

Each of these estimates can provide insight into the performance of a V. parahaemolyticus prediction
model. The probability of quantification (equation 3) can be used to evaluate how well environmental
models can classify whether a quantifiable abundance of V. parahaemolyticus is present across different
regions and time periods in the Chesapeake Bay. The conditional expectation (equation 4) estimates the
V. parahaemolyticus abundance (in terms of GE per milliliter) of a water sample that is assumed to have
a value above the LOQ. This value is helpful for understanding how well prediction models estimate
abundance in areas believed to be at risk for high V. parahaemolyticus concentrations as well as for model
evaluations that use only samples with quantifiable V. parahaemolyticus. Finally, the unconditional
expectation (equation 6) provides an estimated value for V. parahaemolyticus abundance when it is
unknown whether the abundance in a sample is above or below the LOQ. This estimate is the most
relevant for an operational prediction/forecast abundance model, where the abundance in samples is
measured after estimates are calculated, if they are sampled at all.

Statistical analysis. Given the low rate of V. parahaemolyticus detection in spring, only summer and
autumn were considered for the current analyses (n � 1,043). V. parahaemolyticus abundance data, along
with time-indexed and -lagged measures of water quality, were summarized using quartiles and
proportions and were tabulated by sampling season and by year.

Given the strong seasonal trends of water quality in the Chesapeake Bay, all regression analyses were
stratified by sampling season. Univariate Tobit regressions of log10-transformed V. parahaemolyticus
abundance were modeled using time-indexed water temperature as well as the 1- and 2-month-lagged
water temperatures; univariate analyses were repeated for salinity, clarity, and DO. Nonparametric LOESS
regressions were plotted to determine if the assumption of linearity for each variable was appropriate.
If the trends appeared to be nonlinear, linear B splines were calculated with knots that were identified
by visual inspection.

Six sets of prediction models were established. Four of the sets were single-parameter models, and
each included time-indexed and -lagged variables from a specific water quality parameter (e.g., salinity).
A fifth set of models combined all four parameters. The final set further included statistical interactions
between all potential variables, which were extensively explored and selected prior to model fitting.
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Three models were included in each set. The first model used only time-indexed measurements
(lag 0). The second incorporated only temporal 1- and 2-month lags (lag 1 and lag 2, respectively). The
third included measurements from all three time points. These three models were chosen to compare the
prediction power of time-lagged measures to that of time-indexed measures, as well as to quantify
the potential redundancy when all time points were combined. Three additional models were included
in the multiparameter model set: these mirrored the original three models but included additional
environmental measures identified previously (14), in order to quantify the improvement in prediction
performance when using a more complex model. Similar models were also appended to the model set
with interactions but further included statistical interactions previously identified among the additional
variables (14). Details on these additional terms along with the specification for each model can be found
in Table S1 in the supplemental material.

Two complementary model sets were developed as a sensitivity analysis. These were similar in nature
to the multiparameter model sets, but variable selection was optimized to reduce the Akaike information
criterion (AIC) statistic. These sensitivity analyses were conducted to determine if relatively simpler (i.e.,
parsimonious) models would lead to better classification and estimation, potentially by avoiding
overfitting. Details on these model specifications can also be found in Table S1.

Prediction of V. parahaemolyticus presence and abundance was primarily evaluated using a Monte
Carlo cross-validation (CV) technique, as follows. One-third of the data set, stratified a priori by censored
and uncensored V. parahaemolyticus observations, was randomly placed in a holdout sample. The
remaining two-thirds of the data was used to estimate the parameters of each Tobit model. These
models were then applied to the holdout sample in order to calculate the probability of quantification
as well as the conditional and unconditional expected abundance of V. parahaemolyticus. This process
was repeated for 500 iterations. Presence and abundance predictions were also evaluated using a
forecast model in which V. parahaemolyticus samples measured in 2010 (n � 127 for summer; n � 131 for
autumn) were forecasted using models developed with samples from 2007 to 2009.

Estimated values of V. parahaemolyticus were compared to the observed values from water samples
using several prediction metrics. For the probability of quantification, a threshold to classify data above
or below the LOQ was optimized for each forecast model as well as for each iteration of the CV. The
optimization algorithm searched for the threshold with the largest sum of sensitivity and specificity; if
multiple thresholds had the same sum, a candidate threshold was chosen at random. Prediction
classification was evaluated using the accuracy, sensitivity, and specificity metrics. The area under the
curve (AUC) of the receiving operating characteristic curve was also calculated. An AUC of 1.0 implies that
the model is a perfect classifier, and a value of 0.5 indicates that the model is no better than classifying
above/below the LOQ at random. Additionally, the 95% confidence intervals of the AUC were computed
using 2,000 stratified bootstrapped replicates (41). Geographic sensitivity analysis on classification
performance was conducted by stratifying the correct/incorrect classification of holdout samples by
monitoring station for both CV and forecast models. Analogous temporal sensitivity analysis also stratified
classification performance by year of sampling for CV models.

For the conditional and unconditional abundance, prediction estimates were evaluated using the
root mean square error (RMSE) and the mean prediction standard error (MPSE) statistics. The cross-
validation R2 (CV-R2) statistic, which measures how well a predicted value compares to the holdout
sample mean, was also used (42, 43). A value of 1.0 for CV-R2 signifies a perfect prediction, and a value
below 0.0 indicates that the holdout sample mean outperforms the prediction model. Note that for the
conditional abundance of V. parahaemolyticus, only uncensored measures were used to evaluate
prediction performance.

All statistical analyses were performed in R statistical software (44), using the AER package for Tobit
regression modeling (45), ggplot2 for data visualization (46), pROC for several classification metrics (47),
as well as a number of additional packages for analysis support (48–55). Maps were created using ArcGIS
(version 10.5.1) software (56).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM

.01007-19.
SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.
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